Подпишись и читай
самые интересные
статьи первым!

Ремонт CD-проигрывателей. Это просто! Скачать бесплатно книгу: "Современные DVD проигрыватели

Устpойство пpивода CD-ROM.

CD-ROM привод - это сложное электpонно-оптико-механическое устpойство для считывания инфоpмации с лазеpных дисков. Типичный дpайв состоит из платы электpоники (иногда двух и даже тpех плат - схема упpавления шпинделем и усилитель оптопpиемника отдельно), шпиндельного узла, оптической считывающей головки с пpиводом ее пеpемещения и механики загpузки диска.

Hа плате электpоники pазмещены:

  • схема усиления и коppекции сигнала с оптоголовки;
  • схемы ФАПЧ сигнала и САР шпинделя;
  • пpоцессоp обpаботки кода Reed-Solomon;
  • схемы САР фокусиpовки луча и динамического слежения за доpожкой;
  • схема упpавления пеpемещением оптоголовки;
  • пpоцессоp упpавления (логики);
  • буферная память;
  • интерфейс с контроллером (IDE/SCSI/прочие);
  • разъемы интерфейса и выхода звукового сигнала;
  • блок переключателей режимов (перемычек/джамперов).

Типовой пpивод состоит из платы электpоники, шпиндельного двигателя, системы оптической считывающей головки и системы загpузки диска. Hа плате электpоники pазмещены все упpавляющие схемы пpивода, интеpфейс с контpоллеpом компьютеpа, pазъемы интеpфейса и выхода звукового сигнала. Большинство пpиводов использует одну плату электpоники, однако в некотоpых моделях отдельные схемы выносятся на вспомогательные небольшие платы.

Узел шпинделя (двигатель и собственно шпиндель с держателем диска) служит для вращения диска. Обычно диск вращается с постоянной линейной скоростью, что означает, что шпиндель меняет частоту вращения в зависимости от радиуса дорожки, с которого в данный момент считывает информацию оптоголовка. При перемещении головки от внешнего радиуса диска к внутреннему диск должен быстро увеличить скорость вращения примерно вдвое, поэтому от шпиндельного двигателя требуется хорошая динамическая характеристика. Двигатель используется как для разгона, так и для торможения диска.

На оси шпиндельного двигателя (или в собственных подшипниках) закреплен собственно шпиндель, к которому после загрузки прижимается диск. Поверхность шпинделя иногда покрыта резиной или мягким пластиком для устранения проскальзывания диска, хотя в более прогрессивных конструкциях обрезинивают только верхний прижим - чтобы увеличить точность установки диска на шпиндель. Прижим диска к шпинделю осуществляется при помощи верхнего прижима, расположенного с другой стороны диска. В некоторых конструкциях шпиндель и прижим содержат постоянные магниты, сила притяжения которых прижимает прижим через диск к шпинделю. В других конструкциях для этого используются спиральные или плоские пружины.

Система оптической головки состоит из самой головки и системы ее пеpемещения. В головке pазмещены лазеpный излучатель на основе инфpакpасного лазеpного светодиода, система фокусиpовки, фотопpиемник и пpедваpительный усилитель. Система фокусиpовки пpедставляет собой подвижную линзу, пpиводимую в движение электpомагнитной системой voice coil (звуковая катушка), сделанной по аналогии с подвижной системой гpомкоговоpителя. Изменение напpяженности магнитного поля вызывают пеpемещение линзы и пеpефокусиpовку лазеpного луча. Благодаpя малой инеpционности такая система эффективно отслеживает веpтикальные биения диска даже пpи значительных скоpостях вpащения.

Система пеpемещения головки имеет собственный пpиводной двигатель, пpиводящий в движение каpетку с оптической головкой пpи помощи зубчатой либо чеpвячной пеpедачи. Для исключения люфта используется соединение с начальным напpяжением: пpи чеpвячной пеpедаче - подпpужиненные шаpики, пpи зубчатой - подпpужиненные в pазные стоpоны паpы шестеpней. В качестве двигателя обычно используется шаговый двигатель, и гоpаздо pеже - коллектоpный двигатель постоянного тока.

Система загpузки диска бывает тpех ваpиантов: с использованием специальной кассеты для диска (caddy), вставляемого в пpиемную нишу пpивода (аналогично тому, как вставляется 3" дискета в дисковод), с использованием выдвижного лотка (tray), на который кладется сам диск, и с использованием втяжного механизма. Системы с Tray обычно содержат специальный двигатель, обеспечивающий выдвижение лотка, хотя встречаются конструкции (например, Sony CDU31) без специального привода, задвигаемые рукой. Системы с втяжным механизмом применяются как правило в компактных CD-Changer-ах на 4-5 дисков, и обязательно содержат двигатель для втягивания и выброса дисков через узкую зарядную щель.

На передней панели привода обычно расположены кнопка Eject для загрузки/выгрузки диска, индикатор обращения к приводу и гнездо для подключения наушников с электронным или механическим регуля- тором громкости. В ряде моделей добавлена кнопка Play/Next для запуска проигрывания звуковых дисков и перехода между звуковыми дорожками.

Большинство приводов также имеет на передней панели небольшое отверстие, предназначенное для аварийного извлечения диска в тех случаях, когда обычным способом это сделать невозможно - например, при выходе из строя привода лотка или всего CD-ROM, при пропадании питания и т.п. В отверстие обычно нужно вставить шпильку или распрямленную скрепку и аккуратно нажать - при этом снимается блокировка лотка или дискового футляра, и его можно выдвинуть вручную (хотя существуют приводы, например Hitachi, в которых в такое отверстие надо вставлять небольшую отвертку и вращать ей находящуюся за передней панелью драйва ось с шлицем).


Структурная схема CD-ROM


Функциональная схема CD-ROM

Весьма важным компонентом устройства является оптико-электронная система считывания информации. Несмотря на небольшие размеры, система эта - очень сложное и точное оптическое устройство.

Она состоит из:

  • сервосистемы управления вращением диска;
  • сервосистемы позиционирования лазерного считывающего устройства;
  • сервосистемы автофокусировки; сервосистема радиального слежения;
  • системы считывания;
  • схемы управления лазерным диодом.

Сервосистема управления вращением диска обеспечивает постоянство линейной скорости движения дорожки считывания на диске относительно лазерного пятна. При этом угловая скорость вращения диска зависит как от расстояния головки считывания до центра диска, так и от условий считывания информации.


Сервосистема позиционирования головки считывания информации обеспечивает плавное подведение головки к заданной дорожке записи с ошибкой, не превышающей половины ширины дорожки в режимах поиска требуемого фрагмента информации и нормального воспроизведения. Перемещение головки считывания, а вместе с ней и лазерного луча, по полю диска осуществляется двигателем головки. Работа двигателя контролируется сигналами прямого и обратного перемещения, поступающими с процессора управления, а также сигналами, вырабатываемыми процессором радиальных ошибок.

Сервосистема радиального слежения обеспечивает удержание луча лазера на дорожке и оптимальные условия считывания информации. Работа системы основана на методе трех световых пятен. Суть метода заключается в разделении основного луча лазера с помощью дифракционной решетки на три отдельных луча, имеющих незначительное расхождение. Центральное световое пятно используется для считывания информации и для работы системы автофокусировки. Два боковых луча располагаются впереди и позади основного луча с незначительным смещением вправо и влево. Сигнал рассогласования этих лучей от датчиков позиционирования воздействует на привод слежения, вызывая при необходимости коррекцию положения центрального луча.

Работоспособность системы радиального слежения можно проконтролировать по изменению сигнала рассогласования, поступающего на привод слежения.

Контроль и управление вертикальным перемещением фокусирующей линзы осуществляется под воздействием сервофокуса. Эта система обеспечивает точную фокусировку лазерного луча в процессе работы на рабочей поверхности диска. После загрузки и старта CD начинается настройка фокуса по максимальному уровню выходного сигнала фотодетекторной матрицы и минимальному уровню сигнала ошибки детекторов точной фокусировки и прохождения нуля фокуса. В момент старта диска процессор управления CD-ROM вырабатывает сигналы корректировки, которые обеспечивают многократное (двух- или трехкратное) перемещение фокусной линзы, необходимое для точной фокусировки луча на дорожку диска. При нахождении фокуса вырабатывается сигнал, разрешающий считывание информации. Если после двух-трех попыток этот сигнал не появляется, процессор управления выключает все системы и диск останавливается. Таким образом, о работоспособности системы фокусировки можно судить как по характерным движениям фокусной линзы в момент старта диска, так и по сигналу запуска режима ускорения диска при нахождении фокуса луча лазера.

Система считывания информации содержит фотодетекторную матрицу и дифференциальные усилители сигналов. О нормальной работе этой системы можно судить по наличию высокочастотных сигналов на ее выходе при вращении диска.

Система управления лазерным диодом обеспечивает номинальный ток возбуждения диода в режимах пуска диска и считывания информации. Признаком нормальной работы системы является наличие ВЧ-сигнала амплитудой около 1 В на выходе системы считывания.

Системы записи, считывания и последующей обработки информации определяют общую функциональную схему CD-ROM, представленную на функциональной схеме. Помимо рассмотренных выше систем, она включает синхрогенератор, обеспечивающий синхросигналами все узлы CD-ROM, и EFM-демодулятор, преобразующий 14-разрядные кодовые посылки с диска в 8-разрядный последовательный код. Далее информация попадает в процессор цифровых данных, который совместно с процессором системного управления является сердцем всего устройства. Здесь происходит обратное перемежение данных и коррекция ошибок. Задачей перемежения данных при записи информации является «растяжка» каждого байта информации на несколько кадров записи. При этом, если и случается потеря даже нескольких кадров информации в результате механического повреждения поверхности диска, результатом обратного перемежения данных будет наличие мелких ошибок в отдельных байтах. Такие ошибки исправляет схема коррекции ошибок.

Универсальный цифровой диск (digital versatile disc - DVD) - вид накопителя, который в отличие от CD с момента выхода на рынок был рассчитан на широкое применение.

Форматы DVD

Существует пять физических форматов (или книг) DVD, которые мало чем отличаются от различных «оттенков» CD:

  • DVD ROM - среда хранения данных большой емкости, только для чтения;
  • DVD видео - цифровой носитель данных для кинофильмов;
  • DVD аудио - только для хранения звука; формат, подобный аудиоCD;
  • DVD R - однократная запись, многократное чтение; формат, родственный CD-R;
  • DVD RAM - перезаписываемый (стираемый) вариант DVD, который первым появился на рынке и впоследствии нашел в качестве конкурентов форматы DVD RW и DVD+RW.

Имея тот же самый размер как стандартный CD (диаметр 120 миллиметров, толщина 1.2 миллиметров), диски DVD обеспечивают до 17 Гбайт памяти со скоростью передачи выше, чем для CD-ROM, временем доступа, подобным CD-ROM, и имеют четыре версии:

  • DVD 5 - односторонний однослойный диск вместимостью 4.7 Гбайт;
  • DVD 9 - односторонний двухслойный диск на 8.5 Гбайт;
  • DVD 10 - двусторонний однослойный диск 9.4 Гбайт;
  • DVD 18 - вместимость до 17 Гбайт на двустороннем двухслойном диске.

Кроме того, есть проект формата DVD 14 - два слоя на одной стороне, один - на другой, который, будучи более простым в производстве, будет заменять DVD 18, пока потребность в последнем не проявится в полной мере.

Важно признать, что в дополнение к пяти физическим форматам DVD также имеет множество прикладных форматов типа DVD видео и DVD аудио.

Технология DVD

На первый взгляд диск DVD не отличается от CD: пластмассовый диск диаметром 120 миллиметров и толщиной 1.2 миллиметра, оба используют лазеры, чтобы читать данные, записанные во впадинах на спиральной дорожке. Однако семикратное увеличение DVD по вместимости данных сравнительно с CD было в значительной степени достигнуто путем напряжения всех допусков системы-предшественника.

Во-первых, дорожки размещены более плотно, шаг дорожки DVD (расстояние между ними) уменьшен до 0.74 мкм, более чем в 2 раза по сравнению с 1.6 мкм для CD. Впадины (питы) также намного меньше: минимальная длина впадины одного слоя DVD - 0.4 мкм по сравнению с 0.834 мкм для CD. В целом это дает дискам DVD ROM четырехкратную вместимость сравнительно с CD. Плотная упаковка данных составляет только часть решения, основное технологическое достижение DVD связано с его лазером. Меньшие размеры впадин подразумевают, что лазер должен освещать меньшую площадь, и в технологии DVD это достигается путем сокращения длины волны лазера от 780 нм (инфракрасный свет для стандартного CD) до 635 или 650 нм (красный свет).

Характеристики записывающей среды для CD (а) и DVD (б)

Во-вторых, спецификация DVD позволяет считывать информацию более чем с одного слоя, изменяя фокусировку луча лазера чтения. Для перехода с дорожки на дорожку из разных слоев требуется только мгновение, чтобы перефокусировать линзу с одного отражающего слоя уровня на другой. Вместо непрозрачного отражающего слоя здесь используется прозрачный слой с непрозрачным отражающим слоем позади него. Хотя второй слой не может быть столь же плотен, как единственный уровень, это все же дает возможность записать на единственный диск 8.5 Гбайт данных.

  • а - односторонний однослойный (4.7 Гбайт);
  • б - односторонний двухслойный.

В-третьих, DVD позволяет использовать двусторонние диски. Чтобы облегчить фокусировку лазерного луча на меньших дорожках с впадинами, изготовители использовали для диска более тонкую пластмассовую подложку, чем в CD-ROM. Это сокращение привело к дискам, которые имеют толщину 0.6 миллиметров - наполовину меньше CD-ROM. Однако, так как эти диски слишком тонки, чтобы оставаться плоскими при обработке, изготовители склеили два диска, это привело к дискам, имеющим толщину 1.2 миллиметра. Это фактически удваивает потенциальную вместимость диска.

  • а - односторонний, однослойный (4.7 Гбайт);
  • б - односторонний, двухслойный (8.5 Гбайт);
  • в - двухсторонний, однослойный (9.4 Гбайт);
  • г - двухсторонний, двухслойный (17 Гбайт).

Наконец, на DVD используется более эффективная структура данных. Когда CD были разработаны в конце 1970-х годов, в них были использованы относительно простые и грубые системы исправления ошибок. Более эффективный код с исправлением ошибок для DVD оставляет больше памяти для реальных данных.

Проблемы совместимости

Формат DVD с самого начала был связан с проблемами совместимости. Некоторые из них теперь разрешены, но другие, в особенности совместимость перезаписываемых и видеовариантов диска, остаются и выглядят так, будто готовы вырасти до масштабов войны форматов Beta и VHS, которая продолжалась в течение нескольких лет между производителями видеомагнитофонов.

Несовместимость с некоторыми дисководами CD-R и CD-RW была давней проблемой. Болванки, используемые в некоторых из этих устройств, не могут отражать должным образом лазерный луч, используемый в устройствах чтения DVD ROM, что и делает их «нечитабельными». Для носителей CD-RW эта проблема была легко решена по стандарту Мультичтения и путем комплектования устройства DVD ROM лазерами с двумя различными длинами волны. Однако заставить дисководы DVD ROM надежно читать все носители CD-R составляет намного большую проблему. Лазер устройства чтения DVD имеет затруднения при считывании CD-R в связи со снижением отражающей способности поверхности в свете длиной волны 650 нм, в то время как при 780 нм она почти такая, как для CD-ROM.

К осени 1998 года дисководы DVD ROM были все еще неспособны к чтению перезаписываемых дисков DVD. Эта несовместимость была, наконец, ликвидирована в так называемых «дисководах третьего поколения», которые начали появляться в середине 1999 года В них используется модифицированная БИС, предназначенная распознавать различное физическое размещение данных DVD RAM или обрабатывать дополнительные заголовки в потоке данных DVD+RW.

Скорость была другой проблемой для первых дисководов DVD ROM. К середине 1997 года лучшие диски CD-ROM использовали постоянную угловую скорость (Constant angle velosity - CAV), чтобы добиться более высоких скоростей передачи и более низкой вибрации. Однако ранние устройства DVD ROM использовали постоянную линейную скорость (constant linear velosity - CLV). Это не было проблемой для DVD, поскольку их высокая плотность позволяет работать при более медленных скоростях вращения. Однако, поскольку постоянная линейная скорость также использовалась для того, чтобы читать диски CD-ROM, оказалось, что эффективная скорость чтения CLV DVD ROM не могла быть больше 8х.

Таблица содержит совокупные сведения по совместимости по чтению/записи различных форматов. «Да» означает, что некоторые из устройств данного типа могут обработать соответствующий дисковый формат, это не гарантирует, что на это будут способны все такие устройства. «Нет» означает, что соответствующий тип дисковода может обработать формат весьма редко или никогда.

Таблица параметров совместимости различных оптических носителей DVD

Формат диска DVD Тип дисковода DVD
DVD плеер DVD R(G) DVD R(A) DVD RAM DVD RW DVD+RW
R W R W R W R W R W R W
DVD ROM Да Нет Да Нет Да Нет Да Нет Да Нет Да Нет
DVD R(G) Да Нет Да Да Да Нет Да Нет Да Да Да Нет
DVD R(A) Да Нет Да Нет Да Да Да Нет Да Нет Да Нет
DVD RAM Нет Нет Нет Нет Нет Нет Да Да Нет Нет Нет Нет
DVD RW Да Нет Да Да Да Нет Да Нет Да Да Да Нет
DVD+RW Да Нет Да Да Да Нет Нет Нет Да Нет Да Да
CD-R Нет Нет Нет Нет Нет Нет Да Нет Да Да Да Да
CD-RW Нет Нет Нет Нет Нет Нет Да Нет Да Да Да Да

Записываемый DVD

DVD R (или записываемый DVD) во многом концептуально схож с CD-R - это однократно записываемый носитель, который может содержать любой тип информации, обычно сохраняемой на DVD массового производства - видео, аудио, рисунки, файлы данных, программы мультимедиа и так далее В зависимости от типа записываемой информации диски DVD R могут использоваться фактически на любом совместимом устройстве воспроизведения DVD, включая дисководы DVD ROM и проигрыватели DVD видео. Самые первые DVD R сыграли значительную роль в развитии рынка DVD ROM, так как разработчики программного обеспечения нуждались в простом и относительно дешевом способе создания испытательных дисков перед переходом к массовому производству.

Первоначально при появлении осенью 1997 года диски DVD R имели вместимость 3.95 Гбайт, которая затем возросла до 4.7 Гбайт Для однослойного, одностороннего диска DVD R. Так как формат DVD поддерживает двухсторонние диски, до 9.4 Гбайт может быть сохранено на двухстороннем диске DVD R. Данные могут быть написаны на DVD со скоростью 1х (11.08 Мбит/с, что приблизительно эквивалентно 9х скорости CD-ROM). После записи диски DVD R могут читаться с теми же скоростями, что и массово-тиражируемые диски, в зависимости от «х-фактора» (кратности скорости) используемого дисковода DVD ROM.

Таблица иллюстрирует различия между некоторыми основными параметрами обоих форматов.

Таблица форматов CD-R, DVD R

DVD R, подобно CD-R, использует постоянную линейную скорость (CLV), чтобы максимизировать плотность записи на дисковой поверхности. Это требует переменного числа оборотов в минуту (rpm), поскольку диаметр дорожки изменяется при продвижении от одного края диска к другому. Запись начинается на внутренней стороне и заканчивается на внешней. При 1х скорость вращения изменяется от 1623 до 632 об/мин для диска емкостью 3.95 Гбайт и от 1475 до 575 об/мин для 4.7 Гбайт в зависимости от позиции головки записи-воспроизведения на поверхности. Для диска в 3.95 Гбайт интервал (подача) дорожек, или расстояние от центра одного витка спиральной дорожки до прилегающей части дорожки, составляет 0.8 мкм (микрон) или вдвое меньше, чем для CD-R. На диске в 4.7 Гбайт используется еще меньшая подача дорожки - 0.74 мкм.

Запись на дисках DVD R производится с помощью слоя вещества, которое преобразуется (окрашивается) сильно сфокусированным красным лазерным лучом. Слой наносится на прозрачную основу, которая выполнена из поликарбоната методом литья под давлением, и имеет микроскопическое спиральное углубление (дорожку), сформированную на ее поверхности. Это углубление используется дисководом DVD R, чтобы вести луч записывающего лазера, и также содержит записанную информацию после окончания процесса. Кроме того, во-первых, спиральное углубление имеет волнистый профиль (заранее записанный синусоидальный сигнал), который предназначен для синхронизации двигателя шпинделя диска в течение записи, а во-вторых, в областях поверхности между углублениями размешаются «поверхностные отметки» («Land Pre-Pits», или LPP), используемые для целей позиционирования (адресации). Далее на записывающий слой напыляют тонкий слой металла, чтобы в процессе воспроизведения лазерный луч чтения мог быть отражен от диска. На металлическую поверхность затем наносится защитный слой, по которому может быть осуществлена склейка двух сторон диска.

Эти операции выполняются для каждой стороны диска, который будет использоваться для записи. Если обе стороны используются при записи, то две записываемые стороны могут быть соединены вместе, как изображено на рисунке. В этом случае каждая сторона должна читаться непосредственно, путем переворачивания диска. Если создается односторонний диск, то противоположная сторона может содержать метку или некоторую другую видимую информацию.

Запись осуществляется путем мгновенного облучения записывающего слоя сильно сфокусированным лазерным лучом высокой мощности (приблизительно 8-10 мВт). Когда окрашивающийся слой нагрет, он изменяется так, что в спиральном углублении формируются микроскопические отметки. Эти отметки имеют переменную длину в зависимости от того, как долго пишущий лазер был включен или выключен, что и соответствует информации, сохраненной на диске. Записывающий слой чувствителен только к свету соответствующей длины волны, так что воздействие окружающего света или луча лазера воспроизведения не может испортить запись.

Воспроизведение осуществляется путем сосредоточения на поверхности диска луча лазера более низкой мощности и приблизительно той же самой длины волны (635 или 650 нм). Области поверхности между записанными отметками хорошо отражают, и большинство лучей света возвращается на оптическую головку проигрывателя, и наоборот, сами отметки отражают мало света. Таким образом формируется модулируемый сигнал, который затем расшифровывается в исходные пользовательские данные устройством воспроизведения.

К концу 1999 года распространение DVD R оставалось медленным и дисководы были предельно дороги - примерно в 10 раз выше стоймости устройств DVD ROM. В дальнейшем в середине 1999 года появились дисководы DVD ROM, способные к чтению дисков DVD RAM Такие качества носителей, как большая вместимость и долговечность (типичная «продолжительность жизни» более 100 лет), делают эти технологии хорошим выбором для долгосрочного архивного хранения любой информации, которая может быть представлена в цифровой форме. Так как физические размерности дисков DVD идентичны семейству CD-дисков, они могут размещаться на существующих массовых накопителях CD («музыкальных автоматах»). Это позволяет организовать автоматизированный поиск записанных на томах DVD R данных в связанных в сеть средах, при этом емкость памяти увеличивается в 6-7 раз по сравнению с технологией CD-R.

Появление в мае 2000 года Версии 2 Спецификации Форума DVD и последующее увеличение вместимости до 4.7 Гбайт привело к повышению роли DVD R как инструмента для того, чтобы создавать мастер-диски (матрицы) перед массовым выпуском программных средств, производства мультимедиа и как среды для того, чтобы делать копии фильмов. В то же самое время стало ясным, что для потребительского рынка был необходим другой тип носителя DVD R, так что в итоге формат был разбит на «DVD R for Authoring» (авторизованный) и «DVD R for General» (обычный).

DVD R (А) формат по-прежнему рассчитан на профессионального пользователя и другие различия форматов связаны с их относительным рыночным позиционированием. Принципиальным является использование в DVD R (А) мастер-формата Cutting Master Format (CMF). Это позволяет использовать носитель 4.7 Гбайт DVD R (А) в качестве прямой замены для мастер-лент DLT, используемых при тиражировании дисков.

Ключевая характеристика формата DVD R (G) (и весьма возможно, основной фактор в решении Форума DVD о разделении формата DVD R), во-первых, - то, что здесь применяются меры защиты содержания, которые делают физически невозможным делать побитовые копии дисков, зашифрованных специальным методом. Во-вторых, DVD R (G) использует систему убывающих адресов, встроенных в метки (LPP), встроенную контрольную область и позволяет создавать двухсторонние диски.

До середины 2001 года DVD R использовались прежде всего в профессиональных приложениях типа тиражирования видео и сохранения графических данных. Однако перспективы более широкого применения формата DVD R (G) были существенно улучшены при появлении записывающего устройства Pioneer DVR-A03, предназначенного для записи форматов DVD R (G), DVD RW, CD-R и CD-RW при цене около 1000 долларов

Осенью 2003 года, приблизительно в то же самое время, когда сторонница DVD+ Philips выпустила двухслойные носители DVD+R, pioneer объявила, что разработана версия двухслойного формата DVD R, который предполагается предложить Форуму DVD как новый дисковый стандарт после дальнейшего усовершенствования.

При использовании метода записи на слой, изменяющий окраску, новая двухслойная технология DVD R показывает почти те же характеристики, что и двухслойные диски DVD ROM, воспринимая 9.34 процентов колебания на первом записывающем слое (L0) диска с коэффициентом отражения, равным 17.3 %, и колебания 8.08 процентов на втором слое (L1) с коэффициентом отражения 19.5 %. Это означает, что можно будет воспроизводить двухслойные диски DVD R на большинстве существующих проигрывателей DVD и что легко можно будет разработать записывающие устройства DVD, использующие данную технологию.

RVD-RAM

Перезаписываемый DVD ROM или DVD RAM использует технологию изменения фазы, что не является чистой оптической технологией CD и DVD, а смешанной с некоторыми особенностями магнитооптических методов и ведет свое происхождение от оптических дисковых систем PD (технология Panasonic). Применяемый формат «поверхность-углубление» (land groove) позволяет записывать сигналы как на углублениях, сформированных на диске, так и в промежутках между углублениями. Углубления и заголовки секторов формируются на поверхности диска в процессе его отливки. Первое поколение изделий DVD RAM емкостью 2.6 Гбайт с обеих сторон диска для многократного использования появилось в середине 1998 года Однако эти ранние устройства несовместимы со стандартами более высокой вместимости, которые используют контрастный слой расширения и тепловой буферный слой, чтобы достигнуть более высокой плотности записи. Спецификация для версии 2.0 DVD RAM вместимостью 4.7 Гбайт на одной стороне была выпущена в октябре 1999 года Фирма Hitachi достигла вместимости 4.7 Гбайт, сокращая размер записываемой лазером отметки от 0.41-0.43 мкм до 0.28-0.30 мкм и подачи дорожки от 0.74 до 0.59 мкм.

Основное различие между DVD RAM и ROM - в совместимости. Односторонние диски DVD RAM выпускаются в картриджах или без них. Есть два типа картриджей: тип 1 - запечатанный, тип 2 - позволяющий удалять диск. Размеры картриджа - 124.6 х 135.5 х 8.0 миллиметров. Диски могут записываться, только находясь в картридже. Двухсторонние диски DVD RAM помещаются в запечатанные картриджи и не могут считываться более ранними дисководами DVD ROM. Первый дисковод DVD ROM, способный к чтению носителя DVD RAM, который иногда неофициально называют «дисководом третьего поколения», появился на рынке в 1999 году

DVD RW

Известный ранее как DVD R/W или DVD ER, носитель DVD RW появляется в процессе эволюционного развития фирмой Pioneer существующих технологий CD-RW/DVD R, которая стала доступной в конце 1999 года Одной из целей было произвести формат, который был бы совместим с существующей средой DVD. В частности, для дисков DVD RW не требуются защитные картриджи, что позволяет использовать их с загружающими диск механизмами, имеющимися во всех существующих проигрывателях и дисководах.

Диски DVD RW используют технологию изменения фазового состояния вещества для чтения, записи и стирания информации. Луч лазера длины волны 650 нм нагревает слой чувствительного сплава, чтобы перевести его или в кристаллическое (отражающее) состояние, или аморфное (темное, нерефлексивное) в зависимости от уровня температуры и последующей скорости охлаждения. Результирующее различие между записанными темными метками и стертыми отражающими распознается проигрывателем или дисководом и позволяет воспроизвести сохраненную информацию.

Носители DVD RW используют ту же самую физическую схему адресации, как и DVD R. В течение записи лазер дисковода следует за микроскопическим углублением, осуществляя запись данных в спиральной дорожке. Стены микроскопического углубления модулируются синусоидальным образом, образуя сигнал, который считывается дисководом и сравнивается с сигналом генератором для обеспечения точного вращения диска. Этот модулируемый образец называется «модулированным (колеблющимся) углублением» (wobble groove), потому что стены углубления как бы колеблются из стороны в сторону. Этот сигнал используется только в течение записи и никак не влияет на процесс воспроизведения. Среди семейства форматов DVD только записываемые носители используют модулированные дорожки.

На диске создается предварительно форматированная схема адресации, использующая поверхностные метки (LPP), чтобы идентифицировать физический адрес записываемых блоков данных. Эта схема использует ряд микроскопических выступов, которые выделяются в области поверхности между углублениями.

Первый домашний видеорекордер DVD RW, выпущенный в Японии в конце 1999 года, использовал новый формат DVD VR (Video Recording). Следовательно, диски, записанные на нем, не могли использоваться в существующих проигрывателях DVD, поскольку они были совместимы на «физическом уровне», но не на «прикладном уровне». Последующее принятие формата DVD Video разрешило эту специфическую проблему, а дисковод DVR-A03 Pioneer, выпущенный в 2001 году, обеспечил наиболее полный охват записываемых форматов DVD R, DVD RW, CD-R и CD-RW.

Однако, несмотря на успехи проекта, оставалось много препятствий к полной совместимости DVD RW с существующими проигрывателями. Например, некоторые дисководы и проигрыватели принимают DVD RW за двухслойный диск в связи с низкой отражательной способностью носителя и безуспешно пытаются определить местонахождение несуществующего второго слоя. Поэтому некоторые проигрыватели DVD ROM не способны запустить диски DVD RW.

Одно из основных преимуществ третьего перезаписываемого формата DVD - DVD+RW - это то, что он обеспечивает лучшую совместимость, чем любой из его конкурентов.

DVD+RW

Спецификация DVD RAM была компромиссом между Двумя различными предложениями основных конкурентов - группировкой Hitachi, Matsushita Electric и Toshiba, с одной стороны, и союзом Sony/Philips - с другой. Тем не менее с самого начала развития DVD происходило постоянное «перетягивание каната», и летом 1997 года Sony и Philips вместе с Hewlett Packard отказались от согласованного формата, чтобы развить метод, использующий изменение фазы вещества, известный в дальнейшем как DVD+RW. Формат базируется на технологии CD-RW, но несовместим со стандартом DVD RAM, который был согласован только тремя месяцами ранее. Поскольку они не собирались полностью выйти из Форума DVD, лагерь DVD+RW представил измененную форму первоначальной спецификации на рассмотрение Ассоциации европейских производителей компьютеров (European Computer Manufacturers Association - ЕСМА) для одобрения в качестве стандарта. Формат, однако, не был поддержан Форумом DVD.

Поскольку носители DVD RAM обычно использовали оболочки или картриджи (напоминая флоппи-диск размером 5), это вызывало особенную критику у сторонников DVD+RW: они утверждали, что этот подход вынуждает и будущие носители DVD ROM помещать в аналогичные оболочки (картриджи). Односторонний диск DVD RAM может быть удален из оболочки, чтобы использоваться в любом дисководе DVD ROM, но изготовители дисков считают, что после этого диск DVD RAM не сможет производить надежную запись. Сторонники DVD+RW утверждали далее, что размещение DVD RAM в картридж требует больших размеров механизма привода, ограничивая использование этой технологии в ноутбуках или небольших корпусах ЭВМ. Компании, солидарные с Форумом DVD (Matsushita, Hitachi и Toshiba), с другой стороны, утверждали, что картриджи DVD RAM улучшают надежность, особенно для двухсторонних носителей, и что затраты и трудности создания дисков DVD ROM, физически совместимых с RAM-DVD, преувеличены.

DVD+RW имеет много общего с конкурирующей технологией DVD RW, поскольку использует носитель с изменением фазового состояния и предполагает пользовательский опыт, полученный при использовании дисков CD-RW. Пользователи могут как записывать пустой диск, так и использовать защитную оболочку или картридж. Это основное отличие от устройств DVD RAM, которые требуют носитель на основе картриджа. В формате DVD+RW диски могут быть записаны как в режиме постоянной линейной скорости (CLV) для последовательной видеозаписи, так и в формате постоянной угловой скорости (CAV) для прямого доступа. «Потери при монтаже» («Linking loss») являются следствием приостановки и последующего возобновления записи при использовании постоянной битовой скорости (CBR), так что в итоге диск оказывается несовместимым с устройствами чтения, подобными проигрывателям DVD или дисководам DVD ROM. «Монтаж без потерь» («Lossless linking») является методом, разработанным специально для DVD+RW, который при использовании переменной битовой скорости (VBR) позволяет видеоприложениям приостанавливать и продолжать запись без последствий, вызывающих потери. Чтобы сделать это, необходимо записывать произвольный блок данных в определенное место диска с высокой точностью (в пределах 1 мкм). Для этой цели дорожки на диске отпечатываются с более высокой частотой модуляции (wobble frequency), которая обеспечивает условия, при которых запись информации может быть начата и остановлена в точно определенных позициях. Вместе с опцией «отсутствие контроля дефектов» эта особенность позволяет DVD+RW-дискам быть записанными таким образом, чтобы максимизировать совместимость с существующими проигрывателями и дисководами DVD.

Первоначально фазопеременный записывающий слой диска DVD+RW находится в поликристаллическом состоянии. В процессе записи сфокусированный лазерный луч нагревает выбранные области материала выше температуры плавления (500-700 °С), так что вещество быстро переходит в жидкое состояние. Затем при достаточно быстром охлаждении жидкое состояние стабилизируется в так называемом «аморфном состоянии». Если записывающий слой нагрет ниже температуры плавления, но выше температуры кристаллизации (200 °С) в течение достаточного времени (дольше, чем минимальное время кристаллизации), атомы возвращаются к упорядоченному состоянию, то есть поликристаллическому.

Аморфное и кристаллическое состояния имеют различные показатели (индексы) преломления и поэтому оптически различаются.

В DVD+RW аморфное состояние имеет более низкую отражательную способность, чем кристаллическое состояние, и в процессе считывания это приводит к появлению сигнала, идентичного тому, который производится двухслойными дисками DVD ROM, позволяя считывать диски DVD+RW на дисководах DVD ROM, а также на проигрывателях DVD видео.

Носитель состоит из гравированного пол и карбонатного основания, на которое обычно напыляются четыре слоя. Основание отливается со спиральным углублением (дорожкой) для управления сервомотором, адресной информацией и другими данными. Фазопеременный слой помещен между диэлектрическими слоями, которые отнимают избыточное тепло от записывающего слоя. В качестве фазопеременного слоя обычно используется сплав серебра, индия, сербия, теллура (Ag-In-Sb-Te). Химический состав фазопеременного слоя определяет минимальное время кристаллизации. Структура диска (толщина слоев, их теплоемкость и теплопроводность) определяет скорость понижения температуры в течение записи. Точное задание состава записывающего слоя важно для получения необходимых качеств записи. Вообще может использоваться невысокая мощность луча записи, если имеют место слои малой толщины.

Возможно, основное преимущество DVD+RW перед DVD W заключается в области совместимости. Его сторонники утверждают, что это единственная перезаписываемая технология DVD, которая предлагает беспрепятственный обмен носителями между бытовой электроникой и вычислительными машинами и что формат совместим с большинством установленных до конца 1999 года более чем 35 млн DVD видеопроигрывателями и дисководами DVD ROM. Запись, сделанную видеомагнитофоном DVD на диск DVD+RW (4 ч записи-воспроизведения на одну сторону диска), можно запустить на проигрывателе DVD видео так же, как на персональном компьютере с дисководом DVD ROM и дешифратором MPEG-2 видео. Кроме того, DVD+RW позволяет объединить цифровые видеозаписи и цифровые данные в единой файловой системе, как это требуется для записи мультимедиаприложений.

Все дисководы на рынке в начале 2002 года использовали как постоянную линейную скорость (CLV), чтобы достичь максимальной скорости записи 2.4х для носителей DVD+RW (что соответствует 3.32 Мбайт/с), так и постоянную угловую скорость, чтобы позволить чтение CD-ROM со скоростью 32х. Используя эти «х-факторы», которые не очень удобны в эту «эпоху многоформатности», тем более что существует отношение 9:1 фактических скоростей передачи между DVD и CD, можно сказать, что характеристиками устройств были: скорость чтения - 8х (DVD ROM, DVD+RW), записи - 12х (компакт-диск) и перезаписи - 10х (компакт-диск).

Какой из конкурирующих форматов доминирует, в долгосрочной перспективе остается неясным. Добавление способностей DVD R позволяет устройствам DVD RAM производить запись взаимно совместимых дисков. Однако использование перезаписываемых носителей на основе картриджа делает этот формат более полезным для хранения архивных данных, чем в качестве повседневного устройства.

К началу 2002 года казалось, что преимущество было у формата DVD RW. Однако, несмотря на заявления его сторонников относительно превосходной совместимости формата, тот факт, что диски DVD+RW обладают меньшей отражающей способностью, чем DVD R, и поэтому менее совместимы с некоторыми плеерами DVD и дисководами DVD ROM, является потенциальным препятствием. Неопределенность того, какой именно из конкурирующих форматов одержал бы окончательную победу, нашла свое отражение - Sony выпускает дисковод, который поддерживает оба формата - DVD RW и DVD+RW.

DVD+R

Первые дисководы DVD+RW не имели возможности производить запись на носитель DVD с однократной записью. Однако в начале 2002 года Mitsubisi Kagaku Media (более известная по фирменному знаку Verbatim) стала первым изготовителем носителей, предназначенных для технологий DVD+RW в обоих форматах: перезаписываемый (Rewritable) и однократно записываемый (Write-once). Подобно ранее выпущенным носителям DVD+RW, новые DVD+Recordable диски были сертифицированы для 2.4х скорости записи (эквивалентно 3.32 Мбайт/с или производительности CD-R при 22х скорости).

Весной 2002 года начало появляться второе поколение дисководов DVD+RW, способных к обработке обоих типов носителей. Первой была Philips, продемонстрировавшая возможность настройки дисководов на новые форматы путем внесения исправлений во встроенные микропрограммы.

В октябре 2003 года Philips и Verbatim показали на выставке Ceatec (Япония, 2003 года) новую технологию записи двухслойных DVD, которая фактически удваивает вместимость записываемых дисков DVD+R с 4.7 до 8.5 Гбайт при сохранении совместимости с существующими DVD проигрывателями и дисководами DVD ROM.

Двухслойная система DVD+R использует две тонкие органические пленки из окрашиваемого материала, разделенные прокладкой (заполнителем). Нагревание сосредоточенным лазерным лучом необратимо меняет физическую и химическую структуру каждого слоя так, что измененные участки получают оптические свойства, отличные от неизмененной среды. Это приводит к колебаниям отражающей способности при вращении диска, и образуется сигнал считывания, такой же, как в штампованных дисках DVD ROM.

Основная задача разработки данной технологии, начатой в 2001 году, - обеспечение совместимости со стандартом DVD ROM, чтобы гарантировать, что новые двухслойные диски будут прочитываться на коммерчески доступных проигрывателях DVD. Это было достигнуто посредством использования в качестве материала отражателя для верхнего слоя тонкой пленки серебросодержащего сплава, который обеспечивает отражательную способность, по крайней мере, 18 процентов (что согласуется со стандартами на двухслойный DVD ROM). Кроме того, степень прозрачности верхнего слоя записи выше 50 процентов, что позволяет считывание и запись на нижнем уровне. Этот уровень имеет более высокую светочувствительность, так как верхний уровень поглощает и отражает часть падающего света, а также намного более высокий коэффициент отражения (более 50 процентов), который обеспечивает после прохождения через все слои эффективную отражательную способность (на поверхности диска), по крайней мере, в 18 процентов. Эти высокие значения прозрачности и отражательной способности достигнуты путем оптимизации толщины и размещения слоев, размера дорожек и так далее. Другие параметры - амплитуда и прохождение сигналов - были также оптимизированы, чтобы гарантировать совместимость с текущими стандартами DVD.

Сегодняшняя заметка носит сугубо рассказывательный характер, и в ней я расскажу (очень вкратце) давно рассказанные и пересказанные вещи про то, как устроен DVD-диск вообще, и его вариации в частности.

Немножко истории. (необязательно, но полезно для понимания процесса)

В основе абсолютно любого блестящего диска засовываемого в «сидюк» (будь то CD, DVD или ещё что) лежит древняя, как тухлый мамонт, технология изобретённая ещё в 1877г. (19-й век!) известным изобретателем Томасом Эдиссоном. Первое устройство представляло собой вот такой фонограф:


Эта штука умела записывать звук и потом его же воспроизводить. Принцип работы был прост как палка. Для записи звука нужно было включить вращение барабана (на нём была выдавлена непрерывная спиральная канавка от края до края) и что-то сказать в приёмную трубу, на другом конце которой была прикреплена иголка, которая двигаясь по канавке и вибрируя от звука голоса оставляла в ней вмятины разной глубины и формы.

Ну а при воспроизведении записи происходило то же самое, но наоборот — всё та же иголка сунулась по всё той же, но уже изуродованой звуком канавке и вибрировала проваливаясь в продавленные ямки, передавая обратно в трубу (рупор) звук.

То есть, по сути, информация записывалась при помощи углублений на барабане.

Чуть позже громоздкий барабан заменили более удобными грампластинками, на которых по прежнему (но уже промышленным методом) были «нацарапаны» в виде всё тех же вмятин песни, аудиокниги и прочее. Ну а сам аппарат обозвали граммофоном.

С появлением катушечных, а позже и кассетных магнитофонов, использовавших электромагнитные методы записи звука на ленту, граммофоны вкупе с пластинками отправились на бабушкин чердак, где и пролежали вплоть до 80-х годов 20-го столетия. В это время какая-то светлая голова, вероятно, сказала что-то вроде «Мужики, на дворе 20-й век! У нас есть «Звёздные войны», микросхемы и вот эти 8 ящиков громадных видеокассет. Так давай те же сделаем новый особо ёмкий и удобный аналог грампластинки!»

После включения питания, запуска кварцевого генератора и установки в неактивное состояние сигнала сброса RESET на выв. 110 U2 (рис. 1) начинает выполняться программа, хранящаяся во FLASH-памяти. На входах -ОЕ и -СЕ микросхемы U7 устанавливаются сигналы лог. 0 (активное состояние), на выходах U7 появляются сигналы данных AD0-AD7. Основной процессор System CPU 8032 в составе чипа МТ1389 (рис. 3), совместимый с семейством MCS52-51-31, работает на тактовой частоте 27 МГц. Второй процессор ARM в составе чипа МТ1389 имеет архитектуру RISC, его программа также находится во FLASH-памяти. Он отвечает за обработку потока данных и работает на тактовой частоте 108 МГц.

В начале работы управляющая программа выводит на индикатор сообщение "Hello", настраивает привод CD/DVD, выводит сообщение "Loading" и ожидает команду от ДУ (сигнала с ИК приемника) или от панели управления. Если диск установлен, он начинает вращаться, с него считывается информация и на экране появляется список файлов. Если диск в лоток не установлен, на экране появляется заставка. Видеосиг нал снимается с выхода Y3 (выв. 198) микросхемы U2 и через видеоусилитель на элементах L36, Q16 и диоды D12, D14 (рис. 4) поступает на выход композитного сигнала. Если в пользовательских настройках был включен выход VGA или RGB, то сигналы появятся на всех выходах микросхемы U2 (Y1, Y2, Y4, Y5, Y6).

После сообщения "Loading" включается привод диска и загружается лоток, если он был открыт - сигнал TRCLOSE. На микросхему U2 поступают сигналы с датчиков: лоток открыт - TRIN или лоток закрыт - TROUT (выв. 49 и 48 U2).

Лазерные диоды LD-DVD и LD-CD включаются сигналами LD01 (цепь R43-Q4-L23) и LD02 (цепь R45-Q5-L24). Перед установкой нового блока лазера вместо неисправного указанные элементы и цепи желательно проверить. Это позволит предотвратить выход из строя достаточно дорогих сборок SF-HD62 и микросхемы ВА5954. Также желательно проверить на короткое замыкание между собой и на шины питания все выходы микросхемы ВА5954 на катушки фокусировки и поиска/удержания дорожки (выв. 13-16 U3).

Рис. 1. Принципиальная электрическая схема DVD-проигрывателя DVTech D630. Главная плата (Нажмите на изображение для просмотра увеличенного варианта)

Рис. 2. Принципиальная электрическая схема блока лазера SF-HD6

Рис. 3. Архитектура микросхемы МТ1389

Примечание. Удобнее проверять элементы и цепи стрелочным тестером на режиме хЮ Ом. Измеряют сопротивление как относительно общего провода, так и относительно шин питания (выв. 9, 8, 21, 30 29 и 22 U3), с шиной 5 В (L26-"MO_VCC") и с шиной 3,3 В (L8-"LDO-AV33>>). При этом шлейф лазера нужно отсоединять. Обязательно проверять катушки в блоке лазера: сопротивление обмоток катушек для трекинга должно быть око-лоб Ом и 6...7 Ом - для обмоток катушек фокусировки (см. рис. 2) и катушки не должны замыкаться между собой. Удобнее всего "прозвонить" катушки на шлейфе лазера, (контакты 3-4 и 1-2), здесь лучше использовать цифровой омметр с пределом измерения - единицы Ом.

Схема на транзисторах Q1-Q3 (рис. 1) включает лазерный диод DVD или CD. Команды подаются на микросхему U3. Сигналы управления двигателями и блоком лазера формируются сер-вопроцессором, входящим в состав микросхемы МТ1389.

Схема управления загрузкой лотка реализована на транзисторах Q6-Q9 (рис. 1). На вход схемы поступают сигналы TROPEN (выв. 48 U2) и TRCLOSE (выв. 49 U2). Выходные сигналы схемы LOAD± подаются на разъем CN5, и с него поступают на двигатель загрузки.

Скорость вращения диска регулируется сигналом DMSO с выв. 37 U2 (сигнал DMODMSO).

Сигнал подается на выв. 5 U3 и с выходов микросхемы (выв. 11 и 12) сигнал SP± через разъем CN2 подается на шпиндельный двигатель.

Сигнал управления перемещением лазерной головки FMSO с выв. 38 U2 (сигнал FMOFMSO) подается на выв. 23 U3, и с ее выходов (выв. 17 и 18) сигналы SL± через разъем CN2 поступают на двигатель перемещения лазерной головки. При включении блок лазера перемещается к центру диска, пока не появится сигнал LIMIT с датчика. Управление линзой лазера сделано по обычной схеме: катушка фокусировки подключается к выв. 13, 14 U3, а катушка удержания дорожки и поиска (Tracking Coil) - к выв. 15, 16 U3.

После загрузки диск начинает вращаться и, если лазерная головка исправна и правильно настроена, отраженный луч поступает на фотодиоды (рис. 2). С выходов фотодиодов усиленные сигналы А, В, С, D, Е и F, а также смешанный сигнал RFO (формируется только в режиме чтения DVD) через разъемы CN100 (рис. 2) и CN4 (рис. 1) поступают на главную плату, на входы микросхемы U2 (выв. 2-5, выв. 8-11, выв. 18, 19). По входу MDI1 (выв. 20 U2) контролируется уровень мощности лазера. Микросхема U2 формирует три опорных напряжения, которые используются различными узлами схемы: 2,8 В (V2P8, выв. 28), 2 В (V20, выв. 29), 1,4 В (V1P4, выв. 30).

Как уже отмечалось, микросхема МТ1389 - все в одном (System On Chip). В ее составе есть высококачественный кодер ТВ сигнала и процессор перекодировки чередования строк. В этой микросхеме объединены два предыдущих чипа этой же фирмы: DVD-процессор и MPEG-декодер видео и звука.

Рис. 4. Принципиальная электрическая схема. Выходные разъемы зеукоеых и видеосигналов. Память FLASH, SDRAM и EEPROM (Нажмите на изображение для просмотра увеличенного варианта)

Считанные лазерной головкой сигналы через усилитель ВЧ (рис. 3) поступают на обработку в сигнальный процессор. В этой же микросхеме происходит вся дальнейшая обработка сигналов: разделение потоков Мред видео и звука, декодирование, устранение чередования строк, распаковка файлов с изображением в формате Jpeg. Блоки анализатора кода защиты и CCPPM/CPRM/DRM реализуют защиту видео и звуковых файлов от нелегального копирования, а так же декодируют данные после разрешения на их использование (покупки). В микросхеме МТ1389 есть поддержка спецификации CPRM/CPPM (Content Protection for Recordable Media and Pre-Recorded Media). В блоке звукового процессора обрабатывается цифровой звук, а SACD-процессор декодирует музыкальные файлы этого формата.

Внешняя память FLASH и DRAM подключена к чипу МТ1389 через блок контроллера памяти. Оперативная память типа SDRAM управляется по интерфейсу динамической памяти, используя следующие сигналы: SDCLK, SDCKE - разрешение подачи тактовой частоты, МАО-МАЮ - мультиплексированный адрес, DBAO, DBA1 - сигналы выбора адреса банка памяти, DQ0-DQ31 - 32-битная шина данных. С помощью сигналов DRAS, DCAS фиксируются адреса строки и столбца на кристалле памяти, а сигналом WE данные записываются на кристалл. Сигнал DQM - управление разрядностью памяти (8 или 16 бит). На интерфейсе памяти МТ1389 четыре сигнала DQM (0-3) и шина данных 32 бита. Эти сигналы могут использоваться для выбора разных корпусов микросхем. Если в схему устанавливается две микросхемы памяти (рис. 4) с организацией 2 Мбит х 16, (U4 и U5), на первый кристалл подаются сигналы DQM0 и DQM1 (выв. 14 U4 - DQML, выв. 36 - DQMH, управление DQ0-DQ15), на второй - сигналы DQM2 и DQM3 (выв. 14, 36 U5, DQ16-DQ31), так интерфейс памяти становится 32-разрядным. Может быть установлена одна или две микросхемы памяти, разной емкости и разрядности. На последней модификации главной платы используется 32-разрядная память. Это позволяет проигрывать видео с более высокой скоростью потока, до 9600 Кбит/с.

Постоянная память FLASH (U7) включена в 8-битном режиме. В этом режиме младший адрес АО подается на выв. 45 U7 (D15/A0). Сигналы А0-А21 - адрес, AD0-AD7 - данные, СЕ - выбор микросхемы, RD - чтение. Считывание из микросхемы происходит, когда сигналы СЕ и RD в состоянии лог. 0. Сигнал WR - запись используется только при программировании. Управляющую программу можно считать из FLASH-памяти в память компьютера или записать другую версию программы, не выпаивая микросхему из платы. Для этого можно использовать сервисную программу MTKTool, версия 1.31. Работа с ней подробно описана в .

На исправном проигрывателе "прошивку" можно обновить и с диска, записав на него определенный файл с этой прошивкой (обычно MTK.bin). Лучше всего на скорости 115200 работает интерфейс на обычной логике 74LS14. Для преобразования сигналов RS-232 с 12 до 3 В был взят не оригинальный кабель для телефона Siemens. Для устойчивой работы провода с выхода интерфейса до платы проигрывателя должны быть как можно короче (не более 0,5м). Три провода, включая общий, должны быть свиты вместе, или находиться в заземленном экране.

Память EEPROM (U9 типа 24С16 на рис. 4) программой MTKTool пока не считывается не смотря на наличие соответствующей кнопки в режиме Expert. Содержимое EEPROM можно восстановить на обычном программаторе, подойдет, например, Willem EPROM РСВЗЬ. На нем же можно запрограммировать и память FLASH через адаптер TSOP48. В микросхеме U9 находятся настройки пользователя, а также некоторые данные, такие как код региона DVD, изменить которые с пульта ДУ нельзя.

Видеоданные подаются после обработки на ТВ кодер, который формирует видеосигналы в стандарте PAL или NTSC. Отсюда цифровые видеосигналы подаются на шесть независимых ЦАП, и с их выходов сигнал поступает на видеовыходы. ЦАП могут программироваться как в режим компонентных YUV, так и композитных CVBS сигналов (Composite - выход Y3, выв. 198 U2), и одновременно на остальных пяти выходах формируются сигналы RGB стандарта VGA с частотой развертки 31 кГц.

Видеоусилители выполнены по одинаковой схеме (рис. 4), сигнал подается через LC-фильтр и повторитель на транзисторе типа 2N3906, работающем на нагрузку 75 Ом. Он же вместе с диодами защищает выход микросхемы от статического электричества при подключении аппарата к телевизору. При отсутствии видеосигнала проверяются эти элементы, и всегда рекомендуется все коммутации выполнять при обесточенных устройствах.

В звуковом тракте применен ЦАП U12 типа WM8766 фирмы Wolfson Micro. На входы ЦАП с микросхемы U2 подаются сигналы цифрового звука и синхронизации. Выходы ЦАП - шесть каналов звука, идут на предварительные усилители, реализованные на сдвоенных ОУ типа RC4558 (U11, 13, 14). Звуковой сигнал на выходе блокируется с помощью ключа на транзисторе 2N3904. На усилители подается питание через отдельный сглаживающий фильтр.

Перейдем к описанию типовых неисправностей DVD-проигрывателя и их устранению.

Комментарии

    Здравствуйте При проигрывании диска с фильмом часто происходит остановка почти на середине фильма, хотя на диске он полностью и можно это просмотреть на компьютере.Если записать на этот диск мильтики, то смотрится без остановок.Подскажите, как избавиться от дефекта, может кто сталкивался или настройками можно исправить?

    Нага рев Анатолий 13.01.2013 08:54

    здравствуйте у меня не работает dvd при включении в сеть моргает сидиром и ничего больше не работает

    дима 12.11.2012 15:55

    zxzzlS , oectktwtpkby, xcmtdofdtazb, http://jvvxgchdtjrx.com/

Оптический привод или дисковод компакт дисков – это оптико-механическое устройство, предназначенное для считывания информации со , представленных в виде компакт-дисков размером 8 и 12 см. Современные дисководы компакт-дисков универсальны, кроме считывания, они также могут записывать разного рода информацию на диски различных форматов: одноразовые и многоразовые CD-диски (CD-R и CD-RW), одноразовые и многоразовые DVD-диски (DVD-R и DVD-RW).

Принцип работы оптического привода

Основным элементом дисковода служит оптическая система, формирующая лазерный луч, который считывает информацию с вращающегося носителя. Информация на компакт-диске записывается в виде спиральной дорожки, на которой лазерным лучом прожигаются микроскопические углубления. При массовом же производстве дисков с данными, информация на них заносится методом штамповки со специальной матрицы.

Если посмотреть на поверхность диска в микроскоп, то можно увидеть чередующие бугорки и ямки, от которых лазерный луч отражается с разной интенсивность – от бугорка больше, от ямки меньше. А учитывая то, что компьютер обрабатывает информацию в двоичном счислении (закодированную последовательностью нулей и единиц), то в чередовании ямок и бугорков определенным образом можно записать данные. Здесь бугорок выступает в роли единицы, а углубление представляет двоичный ноль.

Устройство дисковода компакт-дисков

Самые распространенные дисководы компакт-дисков на сегодня являются устройства для установки во внутренний отсек , так называемые оптические приводы форм-фактора 5.25 дюйма. Здесь 5.25 дюйма – это размер большого отсека в корпусе компьютера для установки устройств.

Внутри железного корпуса расположены электронная плата, двигатели для вращения диска и оптической системы, сама оптическая система для считывания и записи на компакт-диск. На задней стороне дисковода размещены разъемы для подключения к материнской плате и питания. На передней панели находятся выезжающий лоток для установки компакт-диска, кнопка выдвижения/закрытия лотка и индикатор чтения/записи.

В вашем компьютере, скорее всего, будет как минимум один привод для оптических дисков, в приемный лоток которого можно вставить DVD или CD диск.

Альтернатива оптическим дисководам

В последнее время популярность компакт-дисков для компьютера резко упала в связи с массовым распространением других типов носителей информации, прежде всего флеш-памяти или по другому «флешек». Популярность флешек связана с их невысокой стоимостью, достаточным объемом памяти и быстродействием считывания/записи. Кроме того, для хранения большого объема информации широко используются внешние жесткие диски, подключаемые к

Включайся в дискуссию
Читайте также
Значение цифры 12 в нумерологии
Косметолог по лунному календарю на январь
Совместимость Овна и Водолея: гармоничный союз, не лишенный страсти Если мужчина водолей уходит от девушки овна